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Chapter 3

Univariate Time Series: Linear
Models

3.1 Introduction

Time series is a sequence of numerical data in which observations are measured at a
particular instant of time. The frequency of observation can, for example, be annual,
quarterly, monthly, daily, etc. The main goal of time series analysis is to study the
dynamics of the data.

In this chapter we introduce basic time series models for estimation and fore-
casting of financial data. Further details about theory of time series analysis cab be
found in Hamilton (1994), Greene (2000), Enders (2004), Tsay (2002) and others.

3.2 Stationarity and Autocorrelations

3.2.1 Stationarity

A time series {Y;} is said to be strictly stationaryif for all integers 7, j and all possible
integers k the multivariate distribution function of (Y;, Y41, ..., Yiix_1) is identical
to (Y;,Yj41,...,Yj1k—1). In practice we are very often interested in consequences of
this assumption regarding moments of the distribution. If ¥; and Y; have identical
distribution this implies that their means are identical, thus E[Y;| does not depend on
time and equal to some constant p. Also, because the pairs (Y;, Yiis) and (Y, Y1)

have identical bivariate distributions it follows that the autocovariances
cov(Yy, Yiys) = E (Y — ) (Yies — )] = As

depend only on the time lag s. This implies also that Y; have constant variance

)\0 == 0'2.
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A stochastic process whose first and second order moments (means, variances,
and covariances) do not change with time is said to be second order stationary. More
precisely, a time series Y; is called stationary if the following conditions are satisfied:

ElY)]=p, Bl(Y,—p)?’l =%, BY:—p)(Yies —p)] =7, forallt

Here p, 70, and 7 are finite-valued numbers that do not depend on time ¢.

3.2.2 Autocorrelation

The autocorrelations of a stationary process are defined by ps; = % These corre-

lations describe the short-run dynamic relations within the time series, in contrast
with the trend, which corresponds to the long-run behaviour of the time series.

The simplest possible autocorrelations occur when a stationary process consists
of uncorrelated random variables. In this case pg = 1, p; = 0 for all s > 0. Such
time series is called white noise.

It is important when modeling financial returns to appreciate that if {Y;} is
white noise then Y; and Y, are not necessarily independent for s > 0.

The partial autocorrelation ¢4 at lag s measures the correlation of Y; values
that are s periods apart after removing the correlation from the intervening lags. It
equals the regression coefficient on Y;_, when Y, is regressed on a constant, Y;_1,...,
Yios.

Time series prediction To describe the correlations, we imagine that our ob-
served time series comes from a stationary process that existed before we started ob-
serving it. We denote the past of the stationary process Y; by V,_1 = {Y;_1,Y, 1, ...},
where the "dots" mean that there is no clear-cut beginning of this past. We call it
also the information set available at time point t — 1. The least squares predictor of
Y; based on the past V;_; is the function f();_;) that minimizes E [(V; — f()4-1))?].
This predictor is given by the conditional mean f();_1) = E[Y;|);_1] with corre-
sponding (one-step-ahead) prediction errors ¢, =Y, — f(Vi_1) = Y; — E[Y:| V1]

The process ¢e; is also called the innovation process, as it corresponds to the
unpredictable movements in Y;. If the observations are jointly normally distributed,

then the conditional mean is a linear function of the past observations
EY Vi1l =a+pYioa +p2Yio + ..

Here a models the mean E[Y;] = p of the series. From the above equation we
get = a+ > prp, so that g = (1 — > pr)~!. As the process is assumed to be
stationary, the coefficients p; do not depend on time and the innovation process e;

is also stationary. It has the following properties:
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o Ele) =0 forall t
o Eef] = o2 for all t;
o FElese;] =0 for all s # t.

Here the variance o2 is constant over time.

3.2.3 Example: Variance Ratio Test

Very often a predictability of stock returns is linked to the presence of autocorrelation
in the returns series. If stock returns form an iid process, then variances of holding
period returns should increase in proportion to the length of the holding period.
If the log return is constant, then under the rational expectation hypothesis stock

prices follows a random walk

h

Dith = b+ Digh—1 + U, = b+ f + Diph—a + Uppp + Uppn—1 = pr + ph + Zut+i-
i=0
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Variance of the returns forecasts

h
var [Purn — P} = ZE [ut—&-z} = ho?

i=0
due to the independence. Alternatively, if log returns are iid, then
var [Tt,t-f—h] = var [Tt,t-i-l + Tt+1,t+2 + ‘I— Tt-‘rh—l,t-i-h] = hvar [Tt+1]

The variance-ratio statistic is defined as

L var [r 2
VR Lvar [ryen] — z
"R var [7e41] h; 7)pi:

which should be unity if returns are iid and less than unity under mean reversion.
The variance ratio test is set up as Hy: V R, = 1 and under the null

B VR, —1
 V2@h—1)(h—1)/30T

~ N(0,1).

See Cuthbertson and Nitzsche (2004) for more details about the test. Let us consider
as an example how to program the variance ratio test in EViews.

In this test uses overlapping h-period returns. As an input to the program,
the workfile should contain a series of log prices p used to test for predictability. We
start the program in a usual way.

smpl Qall
lh=2

The variable 'h denotes the horizon of the returns forecast. The next we create one

period and h period returns.
smpl Ofirst+1 @last
series r=p-p(-1)

In order to build the variance ratio statistics we need to have the actual number

of observations (returns), mean and variance of returns series.
scalar T=0Qobs(p)
scalar mu=@mean(r)
scalar varl=Q@sumsq(r-mu)/(T-1)
smpl Ofirst+!h @last
series rh=p-p(-!h)
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scalar varh=0sumsq(rg-'h*mu)/(T-h+1)
We can now compute the variance ratio statistic
scalar VRh=varh/(!h*varl)
scalar Zh=(VRh-1)/@sqrt((2*(2*!g-1)*(!g-1))/(3*!q*T))

We need a p-value in order to test the hypothesis. Two-sided significance level
(p-value) can be calculated as a follows

scalar Zh _level=2*(1-@cnorm(@abs(Zh)))

Finally, we create a table to report the results. We declare a new table VRTEST
object with 2 rows and 5 columns, set the width of each column and write the

context of each sell down.
table(2,5) VRTEST
Setcolwidth(VRTEST,1,15)
Setcolwidth(VRTEST,2,15)
Setcolwidth(VRTEST,3,10)
Setcolwidth(VRTEST,4,10)
Setcolwidth(VRTEST,5,13)
Setcell(VRTEST,1,1,"Nr of obs")
Setcell(VRTEST,1,2,"Horizon h")
Setcell(VRTEST,1,3,"VRh")
Setcell(VRTEST,1,4,"test stat Zh")
Setcell(VRTEST,1,5,"p-value")
Setcell( VRTEST,2,1,T,0)
Setcell(VRTEST,2,2,!h,0)
Setcell(VRTEST,2,3,VRh,4)
Setcell(VRTEST,2,4,Zh,4)
Setcell(VRTEST,2,5,Zh _level,5)
delete r mu rh T varl varh Zh Zh _level

next
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3.3 ARMA processes

A zero mean white noise process {g;} can be used to construct new processes. We
describe two commonly used examples first and afterwards their generalization —

autoregressive-moving average (ARMA) model.

3.3.1 Autoregressive process
A simple way to model dependence between consecutive observations is
Yi=ao+a1Yi1+ ey,

where ¢; is white noise.Such process is called a first-order autoregressive process or
AR(1) process. It is stationary if the coefficient |a;| < 1.
Since E[e;] = 0 it follows that under the stationarity condition the mean of the

process E[Y;] = ;22 and variance var[Y,] = % where 02 = var[e;]. An AR(1)

process has autocorrelations p, = af for s > 1.

A more general representation of the autoregressive process is
Yi=ao+arYia+.. +apYip+&

and called an autoregressive process of order p, or in short, AR(p).

Download free eBooks at bookboon.com

59


http://bookboon.com/

Financial Econometrics Univariate Time Series: Linear Models

3.3.2 Moving average process

Consider the process {Y;} defined by
Yi=ao+ e+ b

s0 Y, is a linear function of the present and immediately preceding innovations. This
process is called a moving average process of order 1 and denoted by M A(1).

A MA(1) process is always stationary with mean g and variance (1 + %) o2.
Its autocorrelations are p; = #}3% and ps =0 for s > 1.

Comparing two time series we see that a shock €, in M A(1) process affects Y;
in two periods (only two positive autocorrelation coefficients), while a shock in the
AR(1) process affects all future observations with a decreasing effect.

The M A(1) process may be inverted to give &; as an infinite series in Y;, Y;_1,...,

namely
e =Y+ 1Yo + BiYio + ..

that is
Y, =-51Y-1 — 5123/15—2 — ...t e

Thus, M A(1) time series can be represented as AR(oco) process. It is possible to
invert M A(1) process into a stationary AR process only if |8;| < 1. This condition
is known as invertibility condition.

A more general representation of a moving average process is
Y, =ag+ei+ Big—i + ... + Byeiyq

and called a moving average process of order ¢, or in short, M A(q).

3.3.3 ARMA process

It is possible to combine the autoregressive and moving average specification into
ARM A(p, q) model

Y=Y+ ..+ +e+ Bicmr + ...+ Bici—yg. (3.3.1)

An ARMA(p, q) time series can be represented in a shorter form using the notion
of lag operator.

The lag operator L, is defined as LY; = Y;_ 1, the operator which gives the
previous value of the series. This operator can also be used to represent the lags of

the second or higher orders in the following way:

L2(Y;) = L(L(Y) = L(Yi1) = Yieo.
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In general ARM A(p, q) process is
A(L)Y; = B(L)ey,

where
A(L)=1—a L — apl? — ... — a,L”
B(L)=1- 3L — BL* — ... — B,L"

Stationarity requires the roots of A(L) to lie outside the unit circle, and invertibility

places the same condition on the roots of B(L).

Table 3.1: Correlation patterns

Time series acf pacf

AR(p) Infinite: decays towards zero Finite: disappears after lag p
M A(q) Finite: disappears after lag ¢ Infinite: decays towards zero
ARMA(p,q) Infinite: damps out Infinite: decays towards zero

3.3.4 Estimation of ARMA processes

ARM A(p, q) models are generally estimated using the technique of maximum like-
lihood.

An often ignored aspect of the maximum likelihood estimation of ARM A(p, q)
models is the treatment of initial values. These initial values are the first p values
of Y; and ¢ values of ¢; in (3.3.1). The exact likelihood utilizes the stationary dis-
tribution of the initial values in the construction of the likelihood. The conditional
likelihood treats the p initial values of Y; as fixed and often sets the ¢ initial values of
et to zero. The exact maximum likelihood estimates (MLE) maximize the exact log-
likelihood, and the conditional MLE maximize the conditional log-likelihood. The
exact and conditional MLEs are asymptotically equivalent but can differ substan-
tially in small samples, especially for models that are close to being non-stationary
or non-invertible.

For pure AR models, the conditional MLEs are equivalent to the least squares
estimates

Model Selection Criteria Before an ARM A(p,q) may be estimated for a
time series Y;, the AR and M A orders p and ¢ must be determined by visually
inspecting the autocorrelation and partial autocorrelation functions for Y;. If the
autocorrelation function decays smoothly and the partial autocorrelations are zero

after one lag, then a first-order autoregressive model is appropriate. Alternatively,
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if the autocorrelations were zero after one lag and the partial autocorrelations decay

slowly towards zero, a first-order moving average process would seem appropriate.
Alternatively, statistical model selection criteria may be used. The idea is to

fit all ARM A(p, q) models with orders p and ¢ and choose the values of p and ¢

which minimizes model selection criteria:

AIC(p,q) =In (6%(p,q)) + %(p +q)
BIC(p,q) =In (6*(p,q)) m;T) (p+q)

where %(p, q) is the MLE of var|[e;] = ¢* without a degrees of freedom correction
from the ARM A(p, q¢) model.

3.3.5 Example: ARMA in EViews

We start our example from the simulation of ARMA process and then we take a look
at its estimation. In order to illustrate the statements in Table 3.1, let us simulate
AR(3), MA(2) and ARMA(3,2) processes and compute their autocorrelation and
partial autocorrelation functions.
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In particular, we simulate

Y;g = 0.8}/;5,1 -+ 0153/;5,2 — 0.1)/;,3 -+ Uy
Y;g = Ut — 0.95Ut_1 + O.3ut_2 (332)
}/t = 0.8Yt_1 + 015}/15_2 — 0.1)/15_3 + Uy — 0.95ut_1 + O.3ut_2

To start with, we generate a series of uncorrelated normally distributed resid-
uals (remember, command nrnd generates standard normally distributed random
number)

series u=0.5*nrnd

Also, we have to generate initial values for the series. Since the highest order of
the series is 3, let us generate first three values. This can be done by setting sample
to only fist three observations and assign zero values to all of three series.

smpl @first Ofirst+2
series y1=0
series y2=0
series y3=0

Now, we set the sample for the rest of observations and generate series according
to formulae (3.3.2)

smpl Ofirst+3 Qlast

y1=0.8*y1(-1)4+0.15*y1(-2)-0.1*y1(-3)+u
y2=u-0.95%u(-1)+0.3*u(-2)
y3=0.8*y1(-1)40.15*y1(-2)-0.1*y1(-3)+u-0.95*u(-1)4+0.3*u(-2)

Now, we are ready to build and inspect their correlograms. Remind, that in order to
build a correlogram, one should click on the icon if the time series being investigated
and choose View/Correlogram... option. The correlograms of three time series
is given on Figures 77-77.

As we have expected, the autocorrelation function for the first series (AR(3))
damps out slowly towards zero while its partial autocorrelation function has spikes
at first three lags. The autocorrelation function of the second series (M A(2)) has
spikes at two first lags and disappears afterwards (becomes insignificant) while the
partial autocorrelation function decays oscillating towards zero. Both autocorrela-
tion and partial autocorrelation functions of the third series (ARMA(3,2)) decay
slowly towards zero without any clear spikes.
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M Series: Y1 Workfile: ARMA:

@ Object || Properties Freeze| |Sample
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Figure 3.1: Correlogram

of an AR(3) process

M Series: Y2 Workfile: ARMA::Untitled}
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Figure 3.2: Correlogram of a M A(2) process

Estimation An estimation of the ARMA processes is performed in EViews

in the same way as OLS estimation of a linear regression. The only difference is

in specifying autoregressive and moving average terms in the model. If the series

has got autoregressive components, we should include terms ar(1), ar(2), etc, as

regressors up to the required order. For example, to estimate the first series, type

yl c ar(1) ar(2) ar(3)

in the estimation equation box. EViews produces an output given in Figure ??

All coeflicients are significant as expected and are very close to the true values.
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BB Series: Y3 Wor
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Figure 3.3: Correlogram of an ARM A(3,2) process

M| Equation: EQO1

Workfile: ARMA::Untitled)

Freeze Estimate ||Forecast

Dependent Variable: v

Method: Least Squares

Date: 12025/05 Time: 15:38

Sample: 4 1000

Included ohservations: 997
Convergence achieved after 3 iterations

Coeflicient Std. Error t-Statistic Froh.

[ -0.216678 0.098657  -2196276 0.0283

AR 0.807148 0.031557 258771 0.0000

AR(Z) 0145277 0.040379 35978485 0.0003

AR -0.111200 0.031564  -3.522968 0.0004

R-squared 0724123 Mean dependentvar -0.212108

Adjusted R-squared 0.723290 5.0. dependentvar 0.940238

S.E. of regression 0494596  Akaike info criterion 1.433853

Sum squared resid 2439128  Schwarz criterion 1.453431

Log likelihood -T10.7757  Hannan-Guinn criter, 1.441333

F-statistic 868.8112  Dwurbin-Watson stat 1.8991509

Prob(F-statistic) 0.000000

Inverted AR Roots 82 36 =37

Figure 3.4: Estimation output of ARM A process

Inference and tests can be performed in the same way as it was done for the OLS

regression.

If one needs to estimate the model containing moving average components,

ma(1), mar(2), etc terms should be included into the model specification. For ex-

ample, to estimate the second time series, we write

y2 ¢ ma(1) ma(2)

Autoregressive and moving average terms can be combined to estimate ARMA
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model. Thus, specification of the third series looks like
y3 c ar(1) ar(2) ar(3) ma(1) ma(2)

After having estimated an ARMA model, one can check whether the estimated coef-
ficients satisfy the stationarity assumptions. This can be done through View /ARMA
structure of the Equation object. For the third series we obtain

M| Fquation: EQD3 Workfile: ARMA::Untitled\

Ohiject Freeze | [Eskimate |Forecast

Inverse Roots of ARMA Polynomial(s)
Specification: ¥3 C AR AR(Z) AR MACT) MA(Z)
Date: 121258105 Time: 16:02

Sample: 41000

Included ohservations: 997

AR Root(s) hModulus Cycle

0.815744 0815744
-0.101284 £ 0082792 0130817 25574972

Mo roatlies outside the unit circle.
ARMA model is stationary.

A Root(s) hModulus Cycle

0.370754 £ 0922464 0994273 5.285871

Mo rootlies outside the unit circle.
ARMA model is invertible.

Figure 3.5: Table of the roots of the estimated ARM A process

It says that our ARMA series is both stationary and invertible.

3.3.6 Programming example

If we had not known the order of the ARMA series, we would need to apply one
of the information criteria to select the most appropriate order of the series. The
following program illustrates how this can be done using the Akaike criterion.

First we need to define the maximal orders for autoregressive and moving
average parts and store them into variables pmax and gmax. Also we need to declare
a matrix object aic where the values of the Akaike statistic will be written for each
specification of the ARMA process.

smpl Qall
scalar pmax=3
scalar gmax=3

matrix(pmax+1,gmax+1) aic
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Next, we define nested loops which will run through all possible ARMA specification
with orders within the maximal values.

for Ip=0 to pmax
for lg=0 to gmax

As the number of lags included in the model increases we add a new AR term in
the model. For this purpose we create a new string variable textsf%order containing
the model specification.

if Ip=0 then %order=""

else

for li=1 to Ip

%order=%order+" ar("+@str(!i)+")"

next

endif
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We perform the same procedure with the MA term specification.
if 1q=0 then %order=%order+""
else
for li=1 to Iq
Y%order=%order+" ma("+@str(li)+")"
next
endif

Once the model specification is determined and written in the variable %order we

can use a substitution to estimate the corresponding model.
equation e.ls y3 ¢ %order
1

%order=

The last command nullify the variable %order for the use in the next step of the
loops. Now we can write the value of the Akaike criterion for the current in the
table.

aic(!p+1,!g+1)=e.Qaic
next

next

delete e

After the program run, the values of the Akaike criterion are stored in the table
aic. Now we can choose that specification of the ARMA model which produces the
smallest AIC value.
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